
The 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 module
It provides classes for working with date and time.

Date and time have countless uses and it's probably hard to find a production application
that doesn't use them. Here are some examples:

• Event logging — thanks to the knowledge of date and time, we are able to
determine when exactly a critical error occurs in our application. When creating
logs, you can specify the date and time format.

• Tracking changes in the database — sometimes it's necessary to store information

about when a record was created or modified. The datetime module will be perfect
for this case.

• Data validation — you'll soon learn how to read the current date and time in
Python. Knowing the current date and time, we're able to validate various types of
data, e.g., whether a discount coupon entered by a user in our application is still
valid.

• Storing important information — can you imagine bank transfers without storing

the information of when they were made? The date and time of certain actions must
be preserved, and we must deal with it.

One of the classes provided by the 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 module is a class called 𝑑𝑎𝑡𝑒. Objects of this
class represent a date consisting of the year, month, and day.

from datetime import date

today = date.today()

print("Today:", today)

print("Year:", today.year)

print("Month:", today.month)

print("Day:", today.day)

This prints the date of “today”.

Sample output:

𝑇𝑜𝑑𝑎𝑦: 2022 − 04 − 17

𝑌𝑒𝑎𝑟: 2022

𝑀𝑜𝑛𝑡ℎ: 4

𝐷𝑎𝑦: 17

Be careful, because these attributes are read-only. To create a 𝑑𝑎𝑡𝑒 object, you must pass
the year, month, and day parameters as follows:

from datetime import date

my_date = date(2021, 8, 27)

print(my_date) # 2021-08-27

When creating a 𝑑𝑎𝑡𝑒 object, keep the following restrictions in mind:

• The 𝑦𝑒𝑎𝑟 parameter must be greater than or equal to 1 (𝑀𝐼𝑁𝑌𝐸𝐴𝑅 constant) and
less than or equal to 9999 (𝑀𝐴𝑋𝑌𝐸𝐴𝑅 constant).

• The 𝑚𝑜𝑛𝑡ℎ parameter must be greater than or equal to 1 and less than or equal to
12.

• The 𝑑𝑎𝑦 parameter must be greater than or equal to 1 and less than or equal to the
last day of the given month and year.

The 𝑑𝑎𝑡𝑒 class gives us the ability to create a 𝑑𝑎𝑡𝑒 object from a 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝.

In Unix, the timestamp expresses the number of seconds since January 1, 1970, 00:00:00

(UTC). This date is called the Unix epoch, because this is when the counting of time began on
Unix systems.

The timestamp is actually the difference between a particular date (including time) and
January 1, 1970, 00:00:00 (UTC), expressed in seconds.

To create a date object from a timestamp, we must pass a Unix timestamp to the
𝑓𝑟𝑜𝑚𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 method.

For this purpose, we can use the 𝑡𝑖𝑚𝑒 module, which provides time-related functions. One
of them is a function called 𝑡𝑖𝑚𝑒() that returns the number of seconds from January 1, 1970
to the current moment in the form of a float number.

Sample output:

𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝: 1650202486.3229122

𝐷𝑎𝑡𝑒: 2022 − 04 − 17

If you run the sample code several times, you'll be able to see how the timestamp
increments itself. It's worth adding that the result of the 𝑡𝑖𝑚𝑒 function depends on the
platform, because in Unix and Windows systems, leap seconds aren't counted.

The 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 module provides several methods to create a 𝑑𝑎𝑡𝑒 object. One of them is the
𝑓𝑟𝑜𝑚𝑖𝑠𝑜𝑓𝑜𝑟𝑚𝑎𝑡 method, which takes a date in the YYYY-MM-DD format compliant with
the ISO 8601 standard.

The ISO 8601 standard defines how the date and time are represented. It's often used, so it's
worth taking a moment to familiarize yourself with it. Take a look at the picture describing
the values required by the format:

YYYY-MM-DD

0s need to be substituted

from datetime import date

d = date.fromisoformat('2022-04-17')

print(d) # 2022-04-17

The 𝑓𝑟𝑜𝑚𝑖𝑠𝑜𝑓𝑜𝑟𝑚𝑎𝑡 method has been available in Python since version 3.7.

Sometimes you may need to replace the year, month, or day with a different value. You
can’t do this with the year, month, and day attributes because they're read-only. In this case,
you can use the method named 𝑟𝑒𝑝𝑙𝑎𝑐𝑒.

from datetime import date

d = date(1991, 2, 5)

print(d) # 1991-02-05

d = d.replace(year = 1992, month = 1, day = 16)

print(d) # 1992-01-16

The 𝑦𝑒𝑎𝑟, 𝑚𝑜𝑛𝑡ℎ and 𝑑𝑎𝑦 parameters are optional. You can pass only one parameter to the
replace method, e.g., year, or all three as in the example.

The 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 method returns a changed date object, so you must remember to assign it to
some variable.

One of the more helpful methods that makes working with dates easier is the method called
𝑤𝑒𝑒𝑘𝑑𝑎𝑦. It returns the day of the week as an integer, where 0 is Monday and 6 is Sunday.

from datetime import date

d = date(2019, 11, 4)

print(d.weekday()) # 0

The 𝑑𝑎𝑡𝑒 class has a similar method called 𝑖𝑠𝑜𝑤𝑒𝑒𝑘𝑑𝑎𝑦, which also returns the day of the
week as an integer, but 1 is Monday, and 7 is Sunday:

from datetime import date

d = date(2019, 11, 4)

print(d.isoweekday()) # 1

As you can see, for the same date we get a different integer, but expressing the same day of
the week. The integer returned by the 𝑖𝑠𝑜𝑑𝑎𝑦𝑤𝑒𝑒𝑘 method follows the ISO 85601
specification.

You already know how to present a date using the 𝑑𝑎𝑡𝑒 object. The 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 module also
has a class that allows you to present time. Can you guess its name? Yes, it's called 𝑡𝑖𝑚𝑒:

from datetime import time

time(hour, minute, second, microsecond, tzinfo, fold)

Restrictions:

• The ℎ𝑜𝑢𝑟 parameter must be greater than or equal to 0 and less than 23.

• The 𝑚𝑖𝑛𝑢𝑡𝑒 parameter must be greater than or equal to 0 and less than 59.

• The 𝑠𝑒𝑐𝑜𝑛𝑑 parameter must be greater than or equal to 0 and less than 59.

• The 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑 parameter must be greater than or equal to 0 and less than
1000000.

• The 𝑡𝑧𝑖𝑛𝑓𝑜 parameter must be a 𝑡𝑧𝑖𝑛𝑓𝑜 subclass object or 𝑁𝑜𝑛𝑒 (default).

• The 𝑓𝑜𝑙𝑑 parameter must be 0 or 1 (default 0).

The 𝑡𝑧𝑖𝑛𝑓𝑜 parameter is associated with time zones, while 𝑓𝑜𝑙𝑑 with wall times. We won't
use them here, but I encourage you to familiarize yourself with them.

from datetime import time

t = time(14, 53, 20, 1)

print("Time:", t) # Time: 14:53:20.000001

print("Hour:", t.hour) # Hour: 14

print("Minute:", t.minute) # Minute: 53

print("Second:", t.second) # Second: 20

print("Microsecond:", t.microsecond) # Microsecond: 1

In the example, we passed four parameters to the class constructor: ℎ𝑜𝑢𝑟, 𝑚𝑖𝑛𝑢𝑡𝑒, 𝑠𝑒𝑐𝑜𝑛𝑑,
and 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑. Each of them can be accessed using the class attributes.

In addition to the 𝑡𝑖𝑚𝑒 class, the Python standard library offers a module called 𝑡𝑖𝑚𝑒, which
provides a time-related function. Now we'll look at another useful function available in this
module.

import time

class Student:

 def take_nap(self, seconds):

 print("I'm very tired. I have to take a nap. See you later.")

 time.sleep(seconds)

 print("I slept well! I feel great!")

student = Student()

student.take_nap(5)

The most important part of the sample code is the use of the 𝑠𝑙𝑒𝑒𝑝 function, which
suspends program execution for the given number of seconds.

Note that the 𝑠𝑙𝑒𝑒𝑝 function accepts only an integer or a floating-point number.

The 𝑡𝑖𝑚𝑒 module provides a function called 𝑐𝑡𝑖𝑚𝑒, which converts the time in seconds
since January 1, 1970 (Unix epoch) to a string.

Pass the result of the 𝑡𝑖𝑚𝑒 function to the 𝑐𝑡𝑖𝑚𝑒 function.

import time

timestamp = 1572879180

print(time.ctime(timestamp))

Mon Nov 4 22:53:00 2019

The 𝑐𝑡𝑖𝑚𝑒 function returns a string for the passed timestamp. In our example, the
timestamp expresses November 4, 2019 at 14:53:00.

It's also possible to call the 𝑐𝑡𝑖𝑚𝑒 function without specifying the time in seconds. In this
case, the current time will be returned:

import time

print(time.ctime())

Some of the functions available in the 𝑡𝑖𝑚𝑒 module require knowledge of the 𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒
class, but before we get to know them, let's see what the class looks like:

time.struct_time:

 tm_year # specifies the year

 tm_mon # specifies the month (value from 1 to 12)

 tm_mday # specifies the day of the month (value from 1 to 31)

 tm_hour # specifies the hour (value from 0 to 23)

 tm_min # specifies the minute (value from 0 to 59)

 tm_sec # specifies the second (value from 0 to 61)

 tm_wday # specifies the weekday (value from 0 to 6)

 tm_yday # specifies the year day (value from 1 to 366)

 tm_isdst # specifies whether daylight saving time applies (1 – yes, 0

– no, -1 – it isn't known)

 tm_zone # specifies the timezone name (value in an abbreviated form)

 tm_gmtoff # specifies the offset east of UTC (value in seconds)

The 𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 class also allows access to values using indexes. Index 0 returns the value
in 𝑡𝑚_𝑦𝑒𝑎𝑟, while 8 returns the value in 𝑡𝑚_𝑖𝑠𝑑𝑠𝑡.

The exceptions are 𝑡𝑚_𝑧𝑜𝑛𝑒 and 𝑡𝑚_𝑔𝑚𝑜𝑓𝑓, which cannot be accessed using indexes. Let's
look at how to use the 𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 class in practice.

import time

timestamp = 1572879180

print(time.gmtime(timestamp))

time.struct_time(tm_year=2019, tm_mon=11, tm_mday=4, tm_hour=14,

tm_min=53, tm_sec=0, tm_wday=0, tm_yday=308, tm_isdst=0)

print(time.localtime(timestamp))

time.struct_time(tm_year=2019, tm_mon=11, tm_mday=4, tm_hour=22,

tm_min=53, tm_sec=0, tm_wday=0, tm_yday=308, tm_isdst=0)

The example shows two functions that convert the elapsed time from the Unix epoch to the
𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 object. The difference between them is that the 𝑔𝑚𝑡𝑖𝑚𝑒 function returns the
𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 object in UTC, while the 𝑙𝑜𝑐𝑎𝑙𝑡𝑖𝑚𝑒 function returns local time. For the
𝑔𝑚𝑡𝑖𝑚𝑒 function, the 𝑡𝑚_𝑖𝑠𝑑𝑠𝑡 attribute is always 0.

The 𝑡𝑖𝑚𝑒 module has functions that expect a 𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 object or a tuple that stores
values according to the indexes presented when discussing the 𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 class.

import time

timestamp = 1572879180

st = time.gmtime(timestamp)

print(time.asctime(st)) # Mon Nov 4 14:53:00 2019

print(time.mktime((2019, 11, 4, 14, 53, 0, 0, 308, 0))) # 1572850380.0

The first of the functions, called 𝑎𝑠𝑐𝑡𝑖𝑚𝑒, converts a 𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 object or a tuple to a
string. Note that the familiar 𝑔𝑚𝑡𝑖𝑚𝑒 function is used to get the 𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 object. If you
don't provide an argument to the 𝑎𝑠𝑐𝑡𝑖𝑚𝑒 function, the time returned by the 𝑙𝑜𝑐𝑎𝑙𝑡𝑖𝑚𝑒
function will be used.

The second function called 𝑚𝑘𝑡𝑖𝑚𝑒 converts a 𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 object or a tuple that expresses
the local time to the number of seconds since the Unix epoch. In our example, we passed a
tuple to it, which consists of the following values:

• 2019 -> tm_year

• 11 -> tm_mon

• 4 -> tm_mday

• 14 -> tm_hour

• 53 -> tm_min

• 0 -> tm_sec

• 0 -> tm_wday

• 308 -> tm_yday

• 0 -> tm_isdst

In the 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 module, date and time can be represented as separate objects or as one.
The class that combines date and time is called 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒.

from datetime import datetime

dt = datetime(2019, 11, 4, 14, 53)

print("Datetime:", dt) # Datetime: 2019-11-04 14:53:00

print("Date:", dt.date()) # Date: 2019-11-04

print("Time:", dt.time()) # Time: 14:53:00

The restrictions are left for you to deduce or find online.

The example creates a 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 object representing November 4, 2019 at 14:53:00. All
parameters passed to the constructor go to read-only class attributes. They're 𝑦𝑒𝑎𝑟, 𝑚𝑜𝑛𝑡ℎ,
𝑑𝑎𝑦, ℎ𝑜𝑢𝑟, 𝑚𝑖𝑛𝑢𝑡𝑒, 𝑠𝑒𝑐𝑜𝑛𝑑, 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑, 𝑡𝑧𝑖𝑛𝑓𝑜, and 𝑓𝑜𝑙𝑑.

The example shows two methods that return two different objects. The method called date

returns the 𝑑𝑎𝑡𝑒 object with the given year, month, and day, while the method called time

returns the 𝑡𝑖𝑚𝑒 object with the given hour and minute.

The 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 class has several methods that return the current date and time. These
methods are:

• 𝑡𝑜𝑑𝑎𝑦() — returns the current local date and time with the 𝑡𝑧𝑖𝑛𝑓𝑜 attribute set to
𝑁𝑜𝑛𝑒.

• 𝑛𝑜𝑤() — returns the current local date and time the same as the today method,

unless we pass the optional argument 𝑡𝑧 to it. The argument of this method must be

an object of the 𝑡𝑧𝑖𝑛𝑓𝑜 subclass.

• 𝑢𝑡𝑐𝑛𝑜𝑤() — returns the current UTC date and time with the 𝑡𝑧𝑖𝑛𝑓𝑜 attribute set to

𝑁𝑜𝑛𝑒.

Run the code here.

from datetime import datetime

print("today:", datetime.today())

print("now:", datetime.now())

print("utcnow:", datetime.utcnow())

Note that there are minor differences by the time elapsed between subsequent cells.

There are many converters available on the Internet that can calculate a timestamp based
on a given date and time, but how can we do it in the 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 module?

This is possible thanks to the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 method provided by the 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 class.

from datetime import datetime

dt = datetime(2020, 10, 4, 14, 55)

print("Timestamp:", dt.timestamp()) # Timestamp: 1601794500.0

The 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 method returns a float value expressing the number of seconds elapsed
between the date and time indicated by the datetime object and January 1, 1970, 00:00:00
(UTC).

Date and time formatting
All 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 module classes presented so far have a method called 𝑠𝑡𝑟𝑓𝑡𝑖𝑚𝑒. This is a very
important method, because it allows us to return the date and time in the format we
specify.

The 𝑠𝑡𝑟𝑓𝑡𝑖𝑚𝑒 method takes only one argument in the form of a string specifying the format
that can consist of directives.

A directive is a string consisting of the character % (percent) and a lowercase or uppercase
letter, e.g., the directive %𝑌 means the year with the century as a decimal number. Let's see
it in an example.

from datetime import date

d = date(2020, 1, 4)

print(d.strftime('%Y/%m/%d')) # 2020/01/04

In the example, we passed a format consisting of three directives separated by / (slash) to
the 𝑠𝑡𝑟𝑓𝑡𝑖𝑚𝑒 method. Of course, the separator character can be replaced by another
character, or even by a string.

You can put any characters in the format, but only recognizable directives will be replaced
with the appropriate values. In the format above we've used the following directives:

• %𝑌 – returns the year with the century as a decimal number. In our example, this is
2020.

• %𝑚 – returns the month as a zero-padded decimal number. In our example, it's 01.

• %𝑑 – returns the day as a zero-padded decimal number. In our example, it's 04.

You can find all available directives here: datetime — Basic date and time types — Python 3.10.4 documentation

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

Time formatting works in the same way as date formatting, but requires the use of
appropriate directives. Let's take a closer look at a few of them.

from datetime import time

from datetime import datetime

t = time(14, 53)

print(t.strftime("%H:%M:%S")) # 14:53:00

dt = datetime(2020, 11, 4, 14, 53)

print(dt.strftime("%y/%B/%d %H:%M:%S")) # 20/November/04 14:53:00

The first of the formats used concerns only time. As you can guess, %𝐻 returns the hour as a
zero-padded decimal number, %𝑀 returns the minute as a zero-padded decimal number,
while %𝑆 returns the second as a zero-padded decimal number. In our example, %𝐻 is
replaced by 14, %𝑀 by 53, and %𝑆 by 00.

The second format used combines date and time directives. There are two new directives,
%𝑌 and %𝐵. The directive %𝑌 returns the year without a century as a zero-padded decimal
number (in our example it's 20). The %𝐵 directive returns the month as the locale’s full
name (in our example, it's November).

In general, you've got a lot of freedom in creating formats, but you must remember to use
the directives properly. As an exercise, you can check what happens if, for example, you try
to use the %𝑌 directive in the format passed to the time object's 𝑠𝑡𝑟𝑓𝑡𝑖𝑚𝑒 method. Try to
find out why you got this result yourself.

The 𝑠𝑡𝑟𝑓𝑡𝑖𝑚𝑒() function in the 𝑡𝑖𝑚𝑒 module
You probably won't be surprised to learn that the 𝑠𝑡𝑟𝑓𝑡𝑖𝑚𝑒 function is available in the time
module. It differs slightly from the 𝑠𝑡𝑟𝑓𝑡𝑖𝑚𝑒 methods in the classes provided by the
𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 module because, in addition to the format argument, it can also take (optionally)
a 𝑡𝑢𝑝𝑙𝑒 or 𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 object.

If you don't pass a 𝑡𝑢𝑝𝑙𝑒 or 𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 object, the formatting will be done using the
current local time. Take a look at the example.

import time

timestamp = 1572879180

print(time.strftime("%Y/%m/%d %H:%M:%S", st)) # 2019/11/04 14:53:00

Creating a format looks the same as for the 𝑠𝑡𝑟𝑓𝑡𝑖𝑚𝑒 methods in the datetime module. In
our example, we use the %𝑌, %𝑚, %𝑑, %𝐻, %𝑀, and %𝑆 directives that you already know.

You can find all available directives in the 𝑡𝑖𝑚𝑒 module here: time — Time access and conversions —
Python 3.10.4 documentation.

The 𝑠𝑡𝑟𝑝𝑡𝑖𝑚𝑒() method
Knowing how to create a format can be helpful when using a method called 𝑠𝑡𝑟𝑝𝑡𝑖𝑚𝑒 in the
𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 class. Unlike the 𝑠𝑡𝑟𝑓𝑡𝑖𝑚𝑒 method, it creates a 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 object from a string
representing a date and time.

The 𝑠𝑡𝑟𝑝𝑡𝑖𝑚𝑒 method requires you to specify the format in which you saved the date and
time. Let's see it in an example.

from datetime import datetime

print(datetime.strptime("2019/11/04 14:53:00", "%Y/%m/%d %H:%M:%S"))

2019-11-04 14:53:00

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime

In the example, we've specified two required arguments. The first is a date and time as a
string: "2019/11/04 14:53:00", while the second is a format that facilitates parsing to a
𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 object. Be careful, because if the format you specify doesn't match the date and
time in the string, it'll raise a 𝑉𝑎𝑙𝑢𝑒𝐸𝑟𝑟𝑜𝑟.

In the 𝑡𝑖𝑚𝑒 module, you can find a function called 𝑠𝑡𝑟𝑝𝑡𝑖𝑚𝑒, which parses a string
representing a time to a 𝑠𝑡𝑟𝑢𝑐𝑡_𝑡𝑖𝑚𝑒 object. Its use is analogous to the 𝑠𝑡𝑟𝑝𝑡𝑖𝑚𝑒 method in
the datetime class:

import time

print(time.strptime("2019/11/04 14:53:00", "%Y/%m/%d %H:%M:%S"))

time.struct_time(tm_year=2019, tm_mon=11, tm_mday=4, tm_hour=14,

tm_min=53, tm_sec=0, tm_wday=0, tm_yday=308, tm_isdst=-1)

Date and time operations
Sooner or later, you'll have to perform some calculations on the date and time. Fortunately,
there's a class called 𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 in the 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 module that was created for just such a
purpose.

To create a 𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 object, just do subtraction on the 𝑑𝑎𝑡𝑒 or 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 objects, just like
here.

from datetime import date

from datetime import datetime

d1 = date(2020, 11, 4)

d2 = date(2019, 11, 4)

print(d1 - d2) # 366 days, 0:00:00

dt1 = datetime(2020, 11, 4, 0, 0, 0)

dt2 = datetime(2019, 11, 4, 14, 53, 0)

print(dt1 - dt2) # 365 days, 9:07:00

The example shows subtraction for both the 𝑑𝑎𝑡𝑒 and 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 objects.

In the first case, we receive the difference in days, which is 366 days. Note that the
difference in hours, minutes, and seconds is also displayed.

In the second case, we receive a different result, because we specified the time that was
included in the calculations. As a result, we receive 365 days, 9 hours, and 7 minutes.

Of course, you can also create an 𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 object yourself. For this purpose, let's get
acquainted with the arguments accepted by the class constructor, which are: 𝑑𝑎𝑦𝑠,
𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, ℎ𝑜𝑢𝑟𝑠, and 𝑤𝑒𝑒𝑘𝑠. Each of them is
optional and defaults to 0.

The arguments should be integers or floating-point numbers, and can be either positive or
negative. Let's look here.

from datetime import timedelta

delta = timedelta(weeks = 2, days = 2, hours = 3)

print(delta) # 16 days, 3:00:00

The result of 16 days is obtained by converting the 𝑤𝑒𝑒𝑘𝑠 argument to days (2 weeks = 14
days) and adding the 𝑑𝑎𝑦𝑠 argument (2 days). This is normal behavior, because the
𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 object only stores 𝑑𝑎𝑦𝑠, 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, and 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠 internally. Similarly, the
ℎ𝑜𝑢𝑟 argument is converted to minutes. Take a look at the example below:

from datetime import timedelta

delta = timedelta(weeks = 2, days = 2, hours = 3)

print("Days:", delta.days) # Days: 16

print("Seconds:", delta.seconds) # Seconds: 10800

print("Microseconds:", delta.microseconds) # Microseconds: 0

The result of 10800 is obtained by converting 3 hours into seconds. In this way the
𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 object stores the arguments passed during its creation. Weeks are converted to
days, hours and minutes to seconds, and milliseconds to microseconds.

Let’s take a look at some operations supported by the 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 module.

from datetime import timedelta

from datetime import date

from datetime import datetime

delta = timedelta(weeks = 2, days = 2, hours = 2)

print(delta) # 16 days, 2:00:00

delta2 = delta * 2

print(delta2) # 32 days, 4:00:00

d = date(2019, 10, 4) + delta2

print(d) # 2019-11-05

dt = datetime(2019, 10, 4, 14, 53) + delta2

print(dt) # 2019-11-05 18:53:00

The 𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 object can be multiplied by an integer. In our example, we multiply the
object representing 16 days and 2 hours by 2. As a result, we receive a 𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 object
representing 32 days and 4 hours. Note that both days and hours have been multiplied by 2.

Another interesting operation using the 𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 object is adding. In the example, we've
added the 𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 object to the 𝑑𝑎𝑡𝑒 and 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 objects.

As a result of these operations, we receive 𝑑𝑎𝑡𝑒 and 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 objects increased by days
and hours stored in the 𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 object.

The presented multiplication operation allows you to quickly increase the value of the
𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎 object, while multiplication can also help you get a date from the future.

Of course, the 𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎, 𝑑𝑎𝑡𝑒 and 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 classes support many more operations. You

are encouraged to familiarize yourself with them in the documentation.

